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An Absolutely Stabilized Finite Element Method 
for the Stokes Problem 

By Jim Douglas, Jr. and Junping Wang 
Dedicated to Eugene Isaacson on the occasion of his seventieth birthday 

Abstract. An absolutely stabilized finite element formulation for the Stokes problem 
is presented in this paper. This new formulation, which is nonsymmetric but stable 
without employment of any stability constant, can be regarded as a modification of the 
formulation proposed recently by Hughes and Franca in [8]. Optimal error estimates in 
L2-norm for the new stabilized finite element approximation of both the velocity and 
the pressure fields axe established, as well as one in Hl-norm for the velocity field. 

1. Introduction. We are concerned with finite element methods for the steady 
state Stokes equation which describes slow motion of an incompressible fluid in Rn 
with n < 3. Let Q be a bounded domain in Rn and let u(x) and p(x) be the velocity 

of the flow and the fluid pressure at the point x E Q1, respectively. The flow of the 
fluid is governed by the Stokes equation 

( -vou+vp=f in Q, 
(1.1) j divu= 

div u = in Q. 

where v is the viscosity of the fluid and f(x) the external unit volumetric force 

acting on the fluid at x E Q. 

Assume that the velocity of the flow on the boundary aQ of Q is given; i.e., 

(1.2) u(x) = g(x) on aQ, 

where g is a function defined on aQ satisfying the compatibility condition 

f g nds = . 

It is not difficult to show that the flow of the fluid is determined uniquely by the 
Stokes equation (1.1) and the boundary condition (1.2); uniqueness of the pressure 
field should be understood in the sense 'of modulo a constant. 

For the sake of simplicity, but without loss of generality, we shall take the vis- 
cosity v to be equal to one and the boundary condition (1.2) to be homogeneous. 

Received May 9, 1988. 
1980 Mathematics Subject Classification (1985 Revision). Primary 65N30, 65N15, 76D07. 
Key words and phrases. Stokes equation, finite element method. 

?1989 American Mathematical Society 
0025-5718/89 $1.00 + $.25 per page 

495 



496 JIM DOUGLAS, JR. AND JUNPING WANG 

As usual, a mixed formulation of the problem (1.1) and (1.2) reads as follows: 
find (u, p) E HI (Q) x LI (Q) such that 

(Vu, Vv) - (div v, p) = (f, v), v E Ho(Q)l 
(1.3) (divu~w)=O, 

(div u, w) = O. w E Lo(Q 

where H8(11) = (H8(())', and H8(Q) is the usual Sobolev space Ws 2(Q2) with 

norm defined by 

jjUI12 = E jj,7Uj1 UE H8E(), 

and 

uj12 = f u2dQ, u E L2 

Let Lo2(Q) be the subspace of L 2(fl) consisting of all such functions in L 2(1) having 
mean value zero. Also, let 

Ho'l() = {v E H'(Q);v = O on al}. 

The standard mixed finite element method for the Stokes problem in its primitive 
variables is based on a triangulation, !?h, of Qi and a finding of a pair of finite element 
spaces Xh x Mh c HI (Q) x Lo (Ql) associated with the triangulation !h such that 

(div v, w) 
(1.4) inf sup 

I 
3 

WEMh VEXh | lV li jWU 110 

where /B is a positive constant independent of h, the maximum of the diameters 
of triangles in %. The inf-sup condition (1.4) is the so-called Babugka-Brezzi 
stability condition and plays an important role in the analysis of the stability and 
the convergence of the mixed finite element method for the Stokes problem (see [1], 
[2] and [61). For a general description of the stability condition (1.4), we refer to 

[5]. 
It is clear that, owing to the stability condition (1.4), not every combination 

of finite element spaces Xh and Mh can be applied to the standard mixed finite 
element formulation of the Stokes problem to obtain an adequate approximation to 
the exact solution. As a simple example, let us take 

Xh = {V: v is C0-piecewise linear}, 

and 
Mh = {W: w is piecewise constant}. 

It is not difficult to show that this combination is unacceptable for the standard 
mixed finite element formulation, although it seems to be the simplest feasible space. 
In fact, most of the known spaces are not quite natural and, therefore, involve some 
basis functions that are not found in many of the engineering code packages which 
are commonly used. 

Recently, Hughes, Franca, and Balestra [7] proposed a stabilized finite element 
formulation for the Stokes problem for which the stability constraint (1.4) is not 
needed. Therefore, more natural and simpler finite element spaces can be used. A 
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more complete analysis of the method of Hughes, Franca, and Balestra has been 
given by Brezzi and Douglas [3]. 

The idea of Hughes, Franca, and Balestra in [7] can be interpreted as follows: let 

!h be a quasi-regular triangulation of Q, and let Xh and Mh be two finite element 
spaces satisfying 

Xh C Ho(Q) 

and 
Mh C H1 (n) nLo 2(). 

A mesh-dependent norm on Xh x Mh can be defined in the following way: 

(1.5) 2j(v, w)111 = IIv 112 + E hT 2iVWIIOT,' 
T 

where hT = diam(T) for T E QSh 

The stabilized finite element approximation (uh, ph) is given by solving the fol- 

lowing linear system: 

(Vuh, Vv) -(div V, ph) = ( f, v), v E Xh 

(1.6) (div uh, w) + ac h2 (Vph - AUh, VW)T = aJ h2 (f, VW)T, w E Mh, 
I ~~~~~T T 

where a is a positive number. The term on the left containing the constant a adds 
stability to the standard mixed finite element formulation for the Stokes problem 
and thus plays an important role for the stability and convergence of the formulation 
(1.6). The a-term on the right maintains consistency. 

In [7], Hughes et al. proved that there exists a constant ao > 0 depending only 
on the shapes of the triangles T E !h such that the linear system (1.6) has a unique 
solution (uh, ph) for any a E (0, ao) and that the solution (uh, ph) converges to the 

exact solution (u, p) of the Stokes problem in the mesh-dependent norm (1.5), as 

h -O 0, if a is bounded away from zero. An error estimate in the L2-norm for the 
stabilized finite element scheme (1.6) has been established by Brezzi and Douglas 
in [3], where they also presented a modification of (1.6). 

The stabilized formulation (1.6) requires continuity for the pressure interpola- 
tion; this requirement has been proved to be removable by Hughes and Franca in 

[8] by introducing a jump operator into the formulation (1.6). Actually, the stabi- 
lized finite element formulation given in [8] developed (1.6) in a more sophisticated 
fashion; it is not only symmetric but also suitable for any combination of finite 
element spaces Xh and Mh, either continuous or discontinuous for the pressure 
component. Nevertheless, the solvability and the convergence of the stabilized fi- 
nite element formulation of Hughes and Franca still rely on a stability constant a 
which is shape-dependent. An error estimate in a mesh-dependent norm analogous 
to (1.5) was derived by Hughes and Franca in [8]. 

In this paper we shall propose an absolutely stabilized finite element formulation 
for the Stokes problem, which can be viewed as a modification of the formulation 
of Hughes and Franca [8], although the forthcoming formulation was discovered by 
the authors independently of [8]. As we shall see in the next section, the modified 
formulation is stable and convergent without the employment of a stability constant. 
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Error estimates in the L2-norm for both the velocity and the pressure are derived 
under an assumption of shape regularity on the triangulation !h, as well as one in 
the H'-norm for the velocity field. 

The paper is organized in the following way. Our finite element formulation will 
be presented in Section 2. Then in Section 3 we establish error estimates for this 
finite element approximation. 

2. Finite Element Formulation. The aim of this section is to present an 
absolutely stabilized finite element formulation for the Stokes problem. For the 
sake of convenience of argument, we shall assume that Q1 is a polygonal domain 
in R'. However, an extension to more general domains can be made without any 
difficulty. 

Let !h = {T} be a triangulation of Q1. Let Rh be a polygonalization of Q1 such 
that !h is a refinement of R'h. A particular example for Rh is a copy of !h. Let 
rh be the collection of the edges of all R belonging to mh; rh can be decomposed 
into two parts: boundary edges ri and interior edges ro. More specifically, let 

rph = {e C i1: e is an edge of some RE h} 

and 
r~h = r h\r h. 

Denote by hT = diam(T) and he = diam(e) the diameters of T E !h U Rh and 
e E rh, respectively. Set h = maxT{hT} and assume that Q = -h = UREAS R. 
Let 

Hh ={VEL2(1h): VIREHk(R), RE~h}. 

Let e E rLh, and let e = R1 n R2. The jump of w E H1 across e is given by 

(2.1) IwI = tre,Rl (W) - tre,R2 (W); 

interchanging R1 and R2 will have no effect on the finite element procedure. 
Let Xh and Mh be the two finite element spaces associated with !h and Rh, 

respectively, defined as follows: 

(2.2) Xh = {V E Ho(Q)): VIT E Pk(T), T E !h}, 

(2.3) Mh={weLE( Q): wIREP1-'(R), RE h}, 

where k and I are two positive integers and P8(T) indicates the collection of poly- 
nomials of degree not greater than s. The finite element spaces Xh and Mh are 
quite simple and natural and are easily constructed. It is these spaces that we are 
going to use to approximate the Stokes problem. In what follows, we shall take 
I = k in (2.3), although I can be taken to be independent of k. 

We define a mesh-dependent norm on Xh x Mh as follows: 

(2.4) III(vXw)111 = IVy jg + Vw 1- AVI1oQh + I orh I (V W) E Xh X Mh, 

where 

(2.5) ||| Vw v III 
2 
4h = EhT||VW - AV 1oT 

T 
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and 

(2.6) IIIW[WIIrh = II Ijj he([WI [WI)e. 
eErh 

Here, ( D,)D indicates the inner product in L2(D) and (,) will be that in L2(Q). 
The positive constants ca and fi in (2.5) and (2.6) are arbitrary and do not depend 
on the triangulation !h. It is clear that (2.4) is well defined for (v, w) belonging 

to (Ho(Q) n H2) X Hh. 

LEMMA 2.1. The relation (2.4) defines a norm over Xh X Mh. 

Proof. It suffices to check that III(v, w)jjj = 0 implies v = 0 and w = 0. In fact, 

(v, w)jjj = 0 implies v = 0, [wI = 0, and w = constant on each T E !h. Thus, it 

follows from the fact w E L(Q1) that w = 0. Z 

We are ready now to present a new stabilized finite element formulation for the 
Stokes problem. Let us begin with a bilinear form 0 defined on Xh x Mh by 

l((q, X)1 (v, w)) = (Vq, Vv) - (div v, X) + (div q, w) 

+ ceZhT (Vx - Aq, Vw - AV)T 
(2.7) T 

+ 0 E he([Jj I[WI)e, 
eErO 

where ca and fi are the same constants as in (2.5) and (2.6). The bilinear form (2.7) 
is coercive on Xh x Mh, since 

(2.8) P((V W), (V W)) = II(V W) II2I (VI W) EXh X Mh. 

Our absolutely stabilized finite element approximation for the Stokes problem 
consists in finding (uh, ph) E Xh X Mh such that 

0((U h,ph), (VW)) 

(2.9) 
(fv) + eZh2(f,Vw- AV)T, (V W) E 

Xh 
X Mh. 

T 

It follows from the coercivity of the bilinear form 0 that the linear system (2.9) 
is uniquely solvable. The bilinear form (2.7) differs from that of [8] in having the 
sign of the second divergence term to be positive, so that it corresponds a bit 
more closely with the usual bilinear form associated with (1.3). We call (2.9) an 
absolutely stabilized finite element formulation for the Stokes problem since no 
constraints other than positivity need be imposed on ca and ,i. 

THEOREM 2.1. There exists a unique solution (uhph) in Xh X Mh of (2.9). 
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The linear system (2.9) can be decomposed into a coupled system by separating 
the effects of v and w. The resulting equations are given by 

(Vuh, Vv)-(div v, ph) - Zh2 (Vph-AUh, AV)T 
T 

= (f, V)-a!hT(f, AV)T, VefiXh, T 

(2. 10) (divUh,w)+ O~hT, (Vp p-^ Au, VW)T + fi Z he (lp"I , U~ 
T eert 

- ar~h-(f, VW)T, w2 E Mh. 
T 

Let (u, p) be the unique solution of the Stokes problem (1.1) and (1.2). Formally, 

we have 

(2.11) achT(Vp - Au, Av)T = ah(fAv)T, v e 
T T 

and 

(2.12) OEhT(Vp - AU, VW)T =I V hT (f Vw )T W M 
T T 

Thus, combining (1.3) with the above two equalities gives 

(Vu, Vv)- (divv, p)- 
ah2(Vp-I 

u, v)T 

(2.13) T 

- (f, V) - a!hT(f, Av)T, V Ei Xh 
T 

and 

(2.14) (div u,2w)(+c h (Vp-AuVW)T = h (f, VW)T, w E Mh. 
T T 

Adding (2.13) to (2.14) gives 

(2.15) ~((u,p),(v,w)) = (f,v)+ah2(f, Vw-Av)T, (v,w) eX X xMh, 

T 

where IPI should be understood to be zero on r~h. In fact, this relation does hold 
for smooth p, for instance p e H1. Thus, (2.15) and (2.9) imply the following error 
equation: 

(2.16) (((u -u), (p - ph)), (V, W)) = 0, (V, W)TX XM Mh. 

In the important special case that the finite element space for k = I = 1 is used 
to approximate the Stokes problem via the formulation (2.9), the bilinear form <> 

reduces to 

(2.17) ((q, X), (v, w)) = (Vq, Vv)-(div v, e)+(div q, w)+f s he(IXI, IWJ)e, 

eEro 

and the corresponding finite-dimensional linear system becomes 

(2.18) 4'dp(uv,pw), (v,w)) = (fav), (v,w) e Xh x Mh. 
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Clearly, 1 involves neither second-order derivatives over the velocity field nor any 
derivatives over the pressure field. Also, it is easy to see that (u, p) satisfies the 

equation (2.18). Thus, we have an analogue of (2.16) for 1. This observation 
should be understood in the remainder of this paper. In this case, our method 
coincides with that of Hughes and Franca [8]. 

For the sake of simplicity of analysis, we shall take a = = 1 and Rh = !h 

throughout the end of this paper; it is easy to extend the analysis to the general case. 
The finite element spaces Xh and Mh can be associated with different triangulations 
of Q1. This could be important from the computational point of view, for a significant 
reduction of the number of degrees of freedom for Mh is possible if Rh 5 !h. The 
precise effect of such a choice is not completely clear from the error estimates that 
follow. 

3. Error Analysis. We shall assume (u,p) to be the exact solution of the 

Stokes problem (1.1) and (1.2). Let (uh, ph) be the stabilized finite element ap- 

proximation of the Stokes problem obtained by solving the linear system (2.9). Our 
primary goal is to establish optimal error estimates in the L2-norm for the velocity 
and the pressure fields, following an optimal error estimate in the Hl-norm for the 
velocity field. 

Let us assume the following approximation properties for the finite element 
spaces Xh and Mh: for any (4', p) E Ho (Q) x L2(Q2), there exists an interpola- 

tion of (4', p), denoted by (4", PI), such that 

(3.1) V(4 4)Io + (ZhT 41'- 4 lOT) +1/ 2 h- 'l(- - i' 2) 1/2 

(3.1) ~ ~~~T eErh 
< Ch-1 011llm if 4 EH 

/3.2) ( ) 1/2 
(3.2) (\h 2 IA(4' _ 4")112, <Chmlll101lm if4'E Hr(Q1), 

where m = min(k + 1, r), and 

(3.3) 11P - hello + lllk'INI,1orh < Ch'l||p|j if p E H8(Q1) and s > 1, 

where I = min(k, s). The symbol C is used to denote a generic constant indepen- 
dent of h and the function being approximated. It is easy to verify that, if the 
triangulation !h is quasi-regular, then (3.1), (3.2) and (3.3) hold for the spaces Xh 
and Mh discussed in the previous section. 

Let 
( = UhUI = , e = u-uI, 

r = p-_p, r,=p-_pi, ep =p-p.I 

By the error equation (2.16), 

(3.4) O((',A), (v, w)) = ( (v, w)), (v,Iw) E Xh x Mh. 
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In particular, by setting (v, w) = (,,r), we see that 

Before going to the error estimate, we should like to define shape regularity for 
the triangulation !h: !h is shape regular if the ratio of the diameter of the cir- 
cumscribed ball for T E !h to that of the inscribed ball is bounded, independently 
of T E ah 

LEMMA 3. 1. Let the triangulation !h be shape regular and assume that q E 
H (O). Then, for any e > 0, there exists a constant C(e) depending only on e and 

the shape regularity of !h such that 

(div q, w)I 
< 

el(v, W)12 

(3.6) + C(e) (h 2 jjq + 
1 
E1 he-1 Iq n1eI2ds), 

T eErh e 

(vw)EXh x Mh. 

Proof. Integration by parts gives 

(3.7) (div q, w) = ,(q,-VW)T + , (q ne, IWI)e, 
T eErh 

where ne is a normal vector for e. Since 

(3.8) (q, -VW)T = (q, -Vw + Av)T - (q, Av)T, 

we have 

|(div q, w)|I < E I(q, Av- VW)Tl + I(q, AV)T 

(3.9)TT 
+E Z I(q ne, [W)ej 

eErh 
0 

Thus, for any e > 0, 6 > 0, 

(div q, w) |< ? Eh | q T + IEh vw-VoT 
T T 

(3.10) + 6ZhT ||IVI|,T + 4 0hTIqIIoT 
T ~~~~6T I 

+ - E he- I1|q * ne 1ds + | W o rh. 1e F 
4eErt^ Je ~ 

Note that the shape regularity assumption on ah implies that there exists a constant 
Q independent of hT such that 

Eh 2IIAVII1T < QIIVVII2, V E Xh. 
T 
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Thus, by taking 6 = eQ-1, 

(div q, w) < ?l (v, W)12 

+ C(e)(~hT I|qII,T + E he j- Iq * eI ds), 
T eErh 

where C(e) = (Q + 1)(4e)1. 0 
Let us now derive the following basic error estimate for the stabilized finite 

element approximation. 

THEOREM 3. 1. Assume that ah is shape regular. Then, 

I(eu I e.) 11 < 3(11( i) 11 + llq llo) 

(3.11) +0C (zh+ IISIIO,T+ E he jI/lse2dS)2 

T ~~~~eErh~ 

Moreover, 

(3.12) l(euep)I < Ch k(IUllk+l + IlPilk) 

and 

(3.13) IIV(u - uh)I|o < Chk(I|Ullk+l + IlPl|k), 

provided that (u, p) E Hk+l (Q) x H 

Proof. By (3.5), 

( (Vf, V )-(div (, t7) + (div ,r) (3.14) 'I I - 

+ Zh2(V? - A, Vr - A)T + E he( +7, IT])e. 
T eEJh 

Thus, 

( ,r) I2 ? (IIV llo + llnlo)IIV~I1o + J(div ,,r)I 

+ Zh2IIVn? - | A~I0T|VT - AI|OT 
T 

+ E heII[tlllOell|TIIllOe 
eErJh 

(3.15) <4 (iiv0iio + ZhT Ivr - lIoT + E heIIITiIIo e) 
T erh0 

+ 2IIV||112 + 2Ilnll + Zh2IIV?7 -_AfII1oT 
T 

+ E heIIll Ie + I(div ,T)I 
eErh 
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To deal with I(div ~,,r)I in (3.15), we make use of Lemma 3.1 with q and (v,w) 

replaced by ' and (J, r), respectively. Hence, by taking e = 4 in (3.6), 

~~~~~ Z 
111( r111 ' 11((,T~ll2+ 211,q 0 + 2111(f, q) III2 

+ C (ight IFI0,T + E he ljj neloe 
T eerh 

Thus, we are led to the following inequality: 

III((,,r)II ' 2(111(f,,q1)II + 1ItqIIo) 

(3.16) +0C (zghtIIT + E 1/2 

T eErh 

Now, combining (3.16) with the usual triangle inequality gives (3.11) immedi- 
ately. Finally, (3.11) and the assumptions (3.1), (3.2), and (3.3) imply (3.12) and 
(3.13). 0 

The rest of this section is devoted to the error analysis in the L2-norm for the 
absolutely stabilized finite element approximation. As usual, we shall employ some 
appropriate duality arguments to obtain the desired results. We would like to 
point out that the analysis is equally applicable to the stabilized finite element 
formulation of Hughes and Franca [8]. 

Let us begin with an estimate for the pressure field ep = p p Consider the 
following problem: find (r, s) E Ho1 (Q) x Lo (Q) such that 0 0 

( (Vr, Vv) - (div v, s) = 0, v E Ho(Q), 
(3.17) 

I -I - I 

(div r, w) = (epw), w E L (2) 

Since ep E LO(Q), it is well known that the problem (3.17) has a unique solution 
which satisfies the a priori estimate 

(3.18) IIV r 1Io + Il1silo < CIIePI1o. 

Let rI be a piecewise linear interpolation of r such that 

(3.19) (Zh2 1-ir - r III2T) < COIl VrIIoX i = 0,1, 

and 
1/2 

THEOREM (E~h he1 I( - l'rI) neI2ds / < CIIVrIIo . 

THEOREM 3.2. Under the assumption of the Theorem 3.1, 

(3.21) IIepIIo < C (II(eus Xep)l + (h2IIzA e u IIoT)) 
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Moreover, 

(3.22) |IepIlo < Ch k(IIUIIk+1 + IlPllk)i 

provided that (u, p) e Hk+l (2) x Hk(Q). 

Proof. It follows from (3.17) that 

(3.23) Ilep II = (div r, e.) = (div(r - r'), ep) + (div rI, ep). 

Since r' is a piecewise linear function, the error equation (2.16) implies that 

(div ri, ep) = (Ve, VrI), 

so that, by (3.18) and (3.19), 

I(div ri, ep)l < liVeu IloIIVrIIlo < CII'Veu llolliVr Ilo 
(3.24) ? cv-- "I e-I 

I 

< CIIV eu llo Ilep llo. 

On the other hand, integration by parts gives 

(div(r - rI), ep) = Z(r - rI, -Vep)T + E ((r - rI) - ne, lepj)e, 
T eerh 

since r and rI vanish on o9[. Thus, 

~~~~ \ ~1/2 /1/2 

I(div(r - rl),ep)l? ( h- 2ir -rIll?T) (h |IIVep 12T 

1 1/2 

+e(I |jI(r-rI)* neI2ds IVePIIII 
(3.25) ee r e 

< CIIVrIllo (h2IlVePII0 T + II epi1112 1 

? C||ep||o (ZhT||IVepII T + 1IlePI1 ) 1/2 

where we have used (3.19), (3.20), and (3.18). By combining (3.23) with (3.24) and 
(3.25), we find that 

1/2 

(3.26) IlepI1o ? C (iiveuiio + C lepNlo 2 + 2 
hTIIVePI 

2 
T) 

To prove (3.21), let us observe that 

,hT ||IVep |IOgT = Z4I|| Vep - ~e u + , e u IIIgT 
T T 

<2 (ZhT |Ve -^ eU IIO T + Zh0T A euIIOT) 



506 JIM DOUGLAS, JR. AND JUNPING WANG 

Thus, 

I1epjIo < c (II(eutep)l+ (h IIAeuII12T) ) 

Finally, (3.22) is a trivial application of (3.12), (3.21), (3.13), and the standard 
inverse inequality. 0 

To establish an error estimate in L2 for the velocity field, we need to make an 
additional assumption on the domain 0. Let 0 be a convex polygon in RI with 
n < 3. Consider the following problem: find (q, 0) E Ho(0) x Lo(Q) such that 0 0 

(V q Vv) - (div v, 0) = (e u, v), v E Ho(Q)E 

(3.27) i (div q, w) = 0, w E Lo(Q). ~~~~~~~~~~~~ 

The convexity of 0 and the C0-smoothness of eu ensure that there exists a unique 

solution (q, 0) E (H12(0) nf Ho(0)) x (H1(0) nL Lo(Q)) such that the following a ~~~~~~~ 0 

priori estimate holds [9]: 

(3.28) llqll2 + 11111 < Clleullo. 

Let qI denote a C0-piecewise linear interpolation of q, and let 0' indicate either 

a C0-piecewise linear or a piecewise constant interpolation of 0, depending on the 
structure of the finite element space Mh. Assume (q', 09) to have the following 

properties: 

(3.29) jlj - qI' < Ch2-i || q112, i = 0, 1, 

(3.30) (Zh IIVOI112T) + (Zhe i110 1112 ) 12 < ChII V@ilo0 

and 

(3.31) 110 - 0'I1o < ChIlVOI1o. 
THEOREM 3.3. In addition to the shape regularity assumption on the triangu- 

lation !h, assume that 0 is a convex polygon in Rn. Then, 

(3.32) lIeulIo < Ch(I(eu,ep)I + IleplIo). 

Moreover, 

(3.33) lIeulIo < Ch k+ (I|UIk+l + IlPilk), 

provided that (u,p) E Hk+l (0) x Hk(0). 

Proof. By (3.27), 

(3.34) 21eUIIO = (Vq, Veu) - (div eu, 0). 

Set 

(3.35) A = (VqVeu) 
I- I 
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and 

(3.36) B =(diveO) =(diveu,0-0') +(diveujI). 

Since qI E Xh is a piecewise-linear function, the error equation (2.16) implies 

that 
A = (V(q - qI), Veu) + (Vq', V eu) 

(3.37) = (V(q - qI), Veu) + (div(qi - q), ep). 

Hence, 

JAI < lIV(q - qI)lo(l Veu llo + Ilepllo) 
(3.38) 

I 

< ChIJeuJIo(IIVeuIlo + IlepIlo), 

where we have used (3.29) and (3.28) in deriving (3.38). 
Next, 

IBI < IIVeuJIoII9 - O'I1o + |(div eu,9')I 

(3.39) < ChJJVeuJ4oJJOIli + |(div eu@,I)I 

< ChIIVeu lIoIl eu lIo + I(div eu, OI)I 

Clearly, it suffices to bound 
D = (div e u,I). 

In fact, the error equation (2.16) implies that 

(3.40) D = -hT (Vep - Aeu,VOI)T -E he (lepj, 10I')e. 
T eErh 

Thus, 

(3.41) DI ? (Zh2IIVep - Aeu II1T) 1 h/2Z 2 
|lo 

I )11 

+ II lepil Iort I11101 o,rh 

Furthermore, an application of (3.30) and (3.31) to (3.41) leads to 

(3.42) DI ? ChilVJllo (E(h 2IIVeP - AeuI112T) + Iiej|o1rh) 

Thus, combining (3.39) with (3.42) and using (3.28), gives 

(3.43) JBI < Chj(eu, ep)j 11 eu llo. 

Now, (3.32) follows from (3.34) combined with (3.38) and (3.43). 0 
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